Feasible Real-time Nonlinear Model Predictive Control
نویسندگان
چکیده
This paper discusses an algorithm for efficiently calculating the control moves for constrained nonlinear model predictive control. The approach focuses on real-time optimization strategies that maintain feasibility with respect to the model and constraints at each iteration, yielding a stable technique suitable for suboptimal model predictive control of nonlinear process. We present a simulation to illustrate the performance of our method.
منابع مشابه
A Linear Matrix Inequality (LMI) Approach to Robust Model Predictive Control (RMPC) Design in Nonlinear Uncertain Systems Subjected to Control Input Constraint
In this paper, a robust model predictive control (MPC) algorithm is addressed for nonlinear uncertain systems in presence of the control input constraint. For achieving this goal, firstly, the additive and polytopic uncertainties are formulated in the nonlinear uncertain systems. Then, the control policy can be demonstrated as a state feedback control law in order to minimize a given cost funct...
متن کاملImproved Optimization Process for Nonlinear Model Predictive Control of PMSM
Model-based predictive control (MPC) is one of the most efficient techniques that is widely used in industrial applications. In such controllers, increasing the prediction horizon results in better selection of the optimal control signal sequence. On the other hand, increasing the prediction horizon increase the computational time of the optimization process which make it impossible to be imple...
متن کاملFast explicit nonlinear model predictive control via multiresolution function approximation with guaranteed stability
In this paper an algorithm for nonlinear explicit model predictive control is introduced based on multiresolution function approximation that returns a low complexity approximate receding horizon control law built on a hierarchy of second order interpolets. Feasibility and stability guarantees for the approximate control law are given using reachability analysis, where interval methods are used...
متن کاملFault-Tolerant Control of a Nonlinear Process with Input Constraints
A Fault-Tolerant Control (FTC) methodology has been presented for nonlinear processes being imposed by control input constraints. The proposed methodology uses a combination of Feedback Linearization and Model Predictive Control (FLMPC) schemes. The resulting constraints in the transformed process will be dependent on the actual evolving states, making their incorporation in the de...
متن کاملRobust Model Predictive Control for a Class of Discrete Nonlinear systems
This paper presents a robust model predictive control scheme for a class of discrete-time nonlinear systems subject to state and input constraints. Each subsystem is composed of a nominal LTI part and an additive uncertain non-linear time-varying function which satisfies a quadratic constraint. Using the dual-mode MPC stability theory, a sufficient condition is constructed for synthesizing the ...
متن کامل